Files
DeepSpeed/deepspeed/nvme/test_ds_aio_utils.py
Olatunji Ruwase 24a1d8f936 DeepNVMe update (#7215)
- FastPersist
- ZeRO-Inference+SGLang

---------

Signed-off-by: Olatunji Ruwase <olruwase@microsoft.com>
Signed-off-by: Olatunji Ruwase <tunji.ruwase@snowflake.com>
Co-authored-by: jerryyangli <jerryyangli@gmail.com>
Co-authored-by: Yang Li <yangli2@microsoft.com>
Co-authored-by: Guanhua Wang <alexwgh333@gmail.com>
Co-authored-by: Connor Holmes <connorholmes@microsoft.com>
Co-authored-by: Bing Xie <67908712+xiexbing@users.noreply.github.com>
Co-authored-by: cassieesvelt <73311224+cassieesvelt@users.noreply.github.com>
Co-authored-by: Jeff Rasley <jerasley@microsoft.com>
Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com>
Co-authored-by: Michael Wyatt <michaelwyatt@microsoft.com>
Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
Co-authored-by: swli <47371259+lucasleesw@users.noreply.github.com>
Co-authored-by: Cheng Li <pistasable@gmail.com>
Co-authored-by: Molly Smith <112220543+molly-smith@users.noreply.github.com>
Co-authored-by: Ubuntu <jomayeri@microsoft.com>
Co-authored-by: Olatunji Ruwase <tunji.ruwase@snowflake.com>
Co-authored-by: Zhipeng Wang <zhipeng.rainbowserie@gmail.com>
2025-06-06 18:49:41 -04:00

92 lines
3.0 KiB
Python
Executable File

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
"""
Functionality of swapping optimizer tensors to/from (NVMe) storage devices.
"""
import os
from .ds_aio_job import Job, run_job
import torch
from deepspeed.accelerator import get_accelerator
BYTES_PER_GB = 1024**3
BYTES_PER_MB = 1024**2
BYTES_PER_KB = 1024
LOG_TIDS = [0]
def task_log(tid, msg, force=False):
if force or tid in LOG_TIDS:
print(f'tid {tid}: {msg}')
def task_barrier(barrier, num_parties):
assert barrier.parties == num_parties
barrier.wait()
assert barrier.broken == False
def report_results(args, read_op, pool_results):
#print(f'pool_results = {pool_results}')
io_string = 'Read' if read_op else 'Write'
if None in pool_results:
print(f'Failure in one of {args.threads} {io_string} processes')
return
total_bytes = sum([num_bytes for _, _, num_bytes in pool_results])
task_latency_sec = max([sec for _, sec, _ in pool_results])
task_speed_GB = 0 if task_latency_sec == 0 else total_bytes / task_latency_sec / BYTES_PER_GB
print(f'Task {io_string} Latency = {task_latency_sec} sec')
print(f'Task {io_string} Speed = {task_speed_GB} GB/sec')
e2e_latency_sec = max([sec for sec, _, _ in pool_results])
e2e_speed_GB = 0 if e2e_latency_sec == 0 else total_bytes / e2e_latency_sec / BYTES_PER_GB
print(f'E2E {io_string} Latency = {e2e_latency_sec} sec')
print(f'E2E {io_string} Speed = {e2e_speed_GB} GB/sec')
def get_block_size_and_count(io_bytes):
if io_bytes > BYTES_PER_MB and io_bytes % BYTES_PER_MB == 0:
block_size = BYTES_PER_MB
block_size_string = '1M'
else:
assert io_bytes % BYTES_PER_KB == 0
block_size = BYTES_PER_KB
block_size_string = '1K'
block_count = io_bytes / block_size
return block_size_string, int(block_count)
def refine_integer_value(value):
unit_dict = {'K': 1024, 'M': 1024**2, 'G': 1024**3}
if value[-1] in list(unit_dict.keys()):
int_value = int(value[:-1]) * unit_dict[value[-1]]
return int_value
return int(value)
def create_filename(folder, read_op, size, tid):
io_string = "read" if read_op else "write"
return os.path.join(folder, f'_aio_{io_string}_{size}.pt.{tid}')
def create_file(filename, num_bytes):
block_size, block_count = get_block_size_and_count(num_bytes)
dd_job = Job(cmd_line=[f'dd if=/dev/urandom of={filename} bs={block_size} count={block_count}'])
print(f'[Start] Create {filename} of {num_bytes} bytes by running {dd_job.cmd()} ....')
run_job(dd_job)
print(f'[Done] Create read file of {num_bytes} bytes by running {dd_job.cmd()} ....')
def create_page_locked_tensor(num_elem, use_accelerator, aio_handle=None):
if use_accelerator:
return get_accelerator().pin_memory(torch.randint(high=128, size=(num_elem, ), dtype=torch.uint8,
device='cpu'))
else:
return aio_handle.new_cpu_locked_tensor(num_elem, torch.empty(0, dtype=torch.uint8))