mirror of
https://github.com/deepspeedai/DeepSpeed.git
synced 2025-10-20 15:33:51 +08:00
Fix invalid f-strings detected by ruff. --------- Signed-off-by: cyy <cyyever@outlook.com> Co-authored-by: Logan Adams <114770087+loadams@users.noreply.github.com> Co-authored-by: Olatunji Ruwase <tunji.ruwase@snowflake.com> Co-authored-by: Michael Wyatt <michael.wyatt@snowflake.com>
196 lines
7.3 KiB
Python
196 lines
7.3 KiB
Python
# Copyright (c) Microsoft Corporation.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# DeepSpeed Team
|
|
|
|
import os
|
|
import torch
|
|
import deepspeed
|
|
import subprocess
|
|
import argparse
|
|
from .ops.op_builder.all_ops import ALL_OPS
|
|
from .git_version_info import installed_ops, torch_info, accelerator_name
|
|
from deepspeed.accelerator import get_accelerator
|
|
|
|
GREEN = '\033[92m'
|
|
RED = '\033[91m'
|
|
YELLOW = '\033[93m'
|
|
END = '\033[0m'
|
|
SUCCESS = f"{GREEN} [SUCCESS] {END}"
|
|
OKAY = f"{GREEN}[OKAY]{END}"
|
|
WARNING = f"{YELLOW}[WARNING]{END}"
|
|
FAIL = f'{RED}[FAIL]{END}'
|
|
INFO = '[INFO]'
|
|
|
|
color_len = len(GREEN) + len(END)
|
|
okay = f"{GREEN}[OKAY]{END}"
|
|
warning = f"{YELLOW}[WARNING]{END}"
|
|
|
|
|
|
def op_report(verbose=True):
|
|
max_dots = 23
|
|
max_dots2 = 11
|
|
h = ["op name", "installed", "compatible"]
|
|
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
|
|
print("DeepSpeed C++/CUDA extension op report")
|
|
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
|
|
|
|
print("NOTE: Ops not installed will be just-in-time (JIT) compiled at\n"
|
|
" runtime if needed. Op compatibility means that your system\n"
|
|
" meet the required dependencies to JIT install the op.")
|
|
|
|
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
|
|
print("JIT compiled ops requires ninja")
|
|
ninja_status = OKAY if ninja_installed() else FAIL
|
|
print('ninja', "." * (max_dots - 5), ninja_status)
|
|
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
|
|
print(h[0], "." * (max_dots - len(h[0])), h[1], "." * (max_dots2 - len(h[1])), h[2])
|
|
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
|
|
installed = f"{GREEN}[YES]{END}"
|
|
no = f"{YELLOW}[NO]{END}"
|
|
for op_name, builder in ALL_OPS.items():
|
|
dots = "." * (max_dots - len(op_name))
|
|
is_compatible = OKAY if builder.is_compatible(verbose) else no
|
|
is_installed = installed if installed_ops.get(op_name,
|
|
False) and accelerator_name == get_accelerator()._name else no
|
|
dots2 = '.' * ((len(h[1]) + (max_dots2 - len(h[1]))) - (len(is_installed) - color_len))
|
|
print(op_name, dots, is_installed, dots2, is_compatible)
|
|
print("-" * (max_dots + max_dots2 + len(h[0]) + len(h[1])))
|
|
|
|
|
|
def ninja_installed():
|
|
try:
|
|
import ninja # noqa: F401 # type: ignore
|
|
except ImportError:
|
|
return False
|
|
return True
|
|
|
|
|
|
def nvcc_version():
|
|
import torch.utils.cpp_extension
|
|
cuda_home = torch.utils.cpp_extension.CUDA_HOME
|
|
if cuda_home is None:
|
|
return f"{RED} [FAIL] cannot find CUDA_HOME via torch.utils.cpp_extension.CUDA_HOME={torch.utils.cpp_extension.CUDA_HOME} {END}"
|
|
try:
|
|
output = subprocess.check_output([cuda_home + "/bin/nvcc", "-V"], universal_newlines=True)
|
|
except FileNotFoundError:
|
|
return f"{RED} [FAIL] nvcc missing {END}"
|
|
output_split = output.split()
|
|
release_idx = output_split.index("release")
|
|
release = output_split[release_idx + 1].replace(',', '').split(".")
|
|
return ".".join(release)
|
|
|
|
|
|
def installed_cann_path():
|
|
if "ASCEND_HOME_PATH" in os.environ or os.path.exists(os.environ["ASCEND_HOME_PATH"]):
|
|
return os.environ["ASCEND_HOME_PATH"]
|
|
return None
|
|
|
|
|
|
def installed_cann_version():
|
|
import re
|
|
ascend_path = installed_cann_path()
|
|
if ascend_path is None:
|
|
return "CANN_HOME does not exist, unable to compile NPU op(s)"
|
|
cann_version = ""
|
|
for dirpath, _, filenames in os.walk(os.path.realpath(ascend_path)):
|
|
if cann_version:
|
|
break
|
|
install_files = [file for file in filenames if re.match(r"ascend_.*_install\.info", file)]
|
|
if install_files:
|
|
filepath = os.path.join(dirpath, install_files[0])
|
|
with open(filepath, "r") as f:
|
|
for line in f:
|
|
if line.find("version") != -1:
|
|
cann_version = line.strip().split("=")[-1]
|
|
break
|
|
return cann_version
|
|
|
|
|
|
def get_shm_size():
|
|
try:
|
|
shm_stats = os.statvfs('/dev/shm')
|
|
except (OSError, FileNotFoundError, ValueError, AttributeError):
|
|
return "UNKNOWN", None
|
|
|
|
shm_size = shm_stats.f_frsize * shm_stats.f_blocks
|
|
shm_hbytes = human_readable_size(shm_size)
|
|
warn = []
|
|
if shm_size < 512 * 1024**2:
|
|
warn.append(
|
|
f" {YELLOW} [WARNING] /dev/shm size might be too small, if running in docker increase to at least --shm-size='1gb' {END}"
|
|
)
|
|
if get_accelerator().communication_backend_name() == "nccl":
|
|
warn.append(
|
|
f" {YELLOW} [WARNING] see more details about NCCL requirements: https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/troubleshooting.html#sharing-data {END}"
|
|
)
|
|
return shm_hbytes, warn
|
|
|
|
|
|
def human_readable_size(size):
|
|
units = ['B', 'KB', 'MB', 'GB', 'TB']
|
|
i = 0
|
|
while size >= 1024 and i < len(units) - 1:
|
|
size /= 1024
|
|
i += 1
|
|
return f'{size:.2f} {units[i]}'
|
|
|
|
|
|
def debug_report():
|
|
max_dots = 33
|
|
|
|
report = [("torch install path", torch.__path__), ("torch version", torch.__version__),
|
|
("deepspeed install path", deepspeed.__path__),
|
|
("deepspeed info", f"{deepspeed.__version__}, {deepspeed.__git_hash__}, {deepspeed.__git_branch__}")]
|
|
if get_accelerator().device_name() == 'cuda':
|
|
hip_version = getattr(torch.version, "hip", None)
|
|
report.extend([("torch cuda version", torch.version.cuda), ("torch hip version", hip_version),
|
|
("nvcc version", (None if hip_version else nvcc_version())),
|
|
("deepspeed wheel compiled w.", f"torch {torch_info['version']}, " +
|
|
(f"hip {torch_info['hip_version']}" if hip_version else f"cuda {torch_info['cuda_version']}"))
|
|
])
|
|
elif get_accelerator().device_name() == 'npu':
|
|
import torch_npu
|
|
report.extend([("deepspeed wheel compiled w.", f"torch {torch_info['version']}"),
|
|
("torch_npu install path", torch_npu.__path__), ("torch_npu version", torch_npu.__version__),
|
|
("ascend_cann version", installed_cann_version())])
|
|
else:
|
|
report.extend([("deepspeed wheel compiled w.", f"torch {torch_info['version']} ")])
|
|
|
|
report.append(("shared memory (/dev/shm) size", get_shm_size()))
|
|
|
|
print("DeepSpeed general environment info:")
|
|
for name, value in report:
|
|
warns = []
|
|
if isinstance(value, tuple):
|
|
value, warns = value
|
|
print(name, "." * (max_dots - len(name)), value)
|
|
if warns:
|
|
for warn in warns:
|
|
print(warn)
|
|
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--hide_operator_status',
|
|
action='store_true',
|
|
help='Suppress display of installation and compatibility statuses of DeepSpeed operators. ')
|
|
parser.add_argument('--hide_errors_and_warnings', action='store_true', help='Suppress warning and error messages.')
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def main(hide_operator_status=False, hide_errors_and_warnings=False):
|
|
if not hide_operator_status:
|
|
op_report(verbose=not hide_errors_and_warnings)
|
|
debug_report()
|
|
|
|
|
|
def cli_main():
|
|
args = parse_arguments()
|
|
main(hide_operator_status=args.hide_operator_status, hide_errors_and_warnings=args.hide_errors_and_warnings)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|