mirror of
https://github.com/deepspeedai/DeepSpeed.git
synced 2025-10-21 08:43:50 +08:00
This reverts commit 047a7599d24622dfb37fa5e5a32c671b1bb44233. Unfortunately, the above required substantial redesign of existing HPU stack, which is currently not feasible, so reverting. Signed-off-by: Max Kovalenko <mkovalenko@habana.ai> Co-authored-by: Olatunji Ruwase <tunji.ruwase@snowflake.com>
332 lines
11 KiB
Python
332 lines
11 KiB
Python
# Copyright (c) Microsoft Corporation.
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# DeepSpeed Team
|
|
|
|
import functools
|
|
import os
|
|
import pkgutil
|
|
import importlib
|
|
import torch
|
|
|
|
from .abstract_accelerator import DeepSpeedAccelerator
|
|
|
|
|
|
class HPU_Accelerator(DeepSpeedAccelerator):
|
|
|
|
def __init__(self):
|
|
self._name = 'hpu'
|
|
self._communication_backend_name = 'hccl'
|
|
self._compile_backend = "hpu_backend"
|
|
self.apply_hpu_workarounds()
|
|
try:
|
|
import habana_frameworks.torch.hpu as hpu
|
|
self.hpu = hpu
|
|
torch.use_deterministic_algorithms(True)
|
|
# TODO: remove this WA when memory mapping break is resolved.
|
|
torch.utils.deterministic.fill_uninitialized_memory = False
|
|
except ImportError as e:
|
|
raise ValueError(
|
|
"HPU_Accelerator requires habana_frameworks.torch.hpu, which is not installed on this system.")
|
|
|
|
self.fp16_supported = None
|
|
|
|
def apply_hpu_workarounds(self):
|
|
|
|
def update_wa_env_var(key, value):
|
|
if key not in os.environ.keys():
|
|
os.environ[key] = value
|
|
|
|
update_wa_env_var("PT_HPU_LAZY_ACC_PAR_MODE", "0")
|
|
update_wa_env_var("PT_HPU_ENABLE_REFINE_DYNAMIC_SHAPES", "0")
|
|
|
|
# Device APIs
|
|
def is_synchronized_device(self):
|
|
return False
|
|
|
|
def use_host_timers(self):
|
|
return False
|
|
|
|
def resolves_data_dependency(self):
|
|
return True
|
|
|
|
def handles_memory_backpressure(self):
|
|
return True
|
|
|
|
def device_name(self, device_index=None):
|
|
# ignoring device_index.
|
|
return 'hpu'
|
|
|
|
def device(self, device_index=None):
|
|
return torch.device(self.device_name(device_index))
|
|
|
|
def set_device(self, device_index):
|
|
self.hpu.set_device(device_index)
|
|
|
|
def current_device(self):
|
|
return (self.hpu.current_device())
|
|
|
|
def current_device_name(self):
|
|
return 'hpu:{}'.format(self.current_device())
|
|
|
|
def device_count(self):
|
|
return self.hpu.device_count()
|
|
|
|
def synchronize(self, device_index=None):
|
|
return self.hpu.synchronize()
|
|
|
|
# RNG APIs
|
|
def random(self):
|
|
return torch.random
|
|
|
|
def set_rng_state(self, new_state, device_index=None):
|
|
self.hpu.random.set_rng_state(new_state)
|
|
|
|
def get_rng_state(self, device_index=None):
|
|
return self.hpu.random.get_rng_state()
|
|
|
|
def manual_seed(self, seed):
|
|
return self.hpu.random.manual_seed(seed)
|
|
|
|
def manual_seed_all(self, seed):
|
|
self.hpu.random.manual_seed_all(seed)
|
|
|
|
def initial_seed(self):
|
|
return self.hpu.random.initial_seed()
|
|
|
|
def default_generator(self, device_index):
|
|
return self.hpu.random.default_generators[device_index]
|
|
|
|
# Streams/Events
|
|
@property
|
|
def Stream(self):
|
|
return self.hpu.Stream
|
|
|
|
def stream(self, stream):
|
|
return self.hpu.stream(stream)
|
|
|
|
def current_stream(self, device_index=None):
|
|
return self.hpu.current_stream()
|
|
|
|
def default_stream(self, device_index=None):
|
|
return self.hpu.default_stream()
|
|
|
|
@property
|
|
def Event(self):
|
|
import habana_frameworks.torch.core as htcore
|
|
return htcore.hpu.Event
|
|
|
|
# Memory management
|
|
def empty_cache(self):
|
|
return
|
|
|
|
def memory_allocated(self, device_index=None):
|
|
return self.hpu.memory_allocated()
|
|
|
|
def max_memory_allocated(self, device_index=None):
|
|
return self.hpu.max_memory_allocated()
|
|
|
|
def reset_max_memory_allocated(self, device_index=None):
|
|
return self.hpu.reset_max_memory_allocated()
|
|
|
|
def memory_cached(self, device_index=None):
|
|
return self.hpu.memory_cached(device_index)
|
|
|
|
def max_memory_cached(self, device_index=None):
|
|
return self.hpu.max_memory_cached(device_index)
|
|
|
|
def reset_max_memory_cached(self, device_index=None):
|
|
return None
|
|
|
|
def memory_stats(self, device_index=None):
|
|
return self.hpu.memory_stats(device_index)
|
|
|
|
def reset_peak_memory_stats(self, device_index=None):
|
|
self.hpu.reset_peak_memory_stats(device_index)
|
|
|
|
def memory_reserved(self, device_index=None):
|
|
return self.hpu.memory_reserved(device_index)
|
|
|
|
def max_memory_reserved(self, device_index=None):
|
|
return self.hpu.max_memory_reserved(device_index)
|
|
|
|
def total_memory(self, device_index=None):
|
|
return self.memory_stats(device_index)['Limit']
|
|
|
|
def available_memory(self, device_index=None):
|
|
return self.total_memory(device_index) - self.memory_allocated(device_index)
|
|
|
|
# Data types
|
|
def is_bf16_supported(self):
|
|
return True
|
|
|
|
def is_fp16_supported(self):
|
|
if self.fp16_supported is None:
|
|
import habana_frameworks.torch.utils.experimental as htexp
|
|
self.fp16_supported = htexp._is_fp16_supported()
|
|
return self.fp16_supported
|
|
|
|
def supported_dtypes(self):
|
|
supported_dtypes = [torch.float, torch.bfloat16]
|
|
if self.is_fp16_supported():
|
|
supported_dtypes.append(torch.half)
|
|
return supported_dtypes
|
|
|
|
# Misc
|
|
def amp(self):
|
|
return None
|
|
|
|
def is_available(self):
|
|
return self.hpu.is_available()
|
|
|
|
def range_push(self, msg):
|
|
return
|
|
|
|
def range_pop(self):
|
|
return
|
|
|
|
def lazy_call(self, callback):
|
|
callback()
|
|
|
|
def communication_backend_name(self):
|
|
return self._communication_backend_name
|
|
|
|
def is_triton_supported(self):
|
|
return False
|
|
|
|
# Graph operations
|
|
def create_graph(self):
|
|
return self.hpu.HPUGraph()
|
|
|
|
def capture_to_graph(self, graph, pool=None, stream=None):
|
|
return self.hpu.graph(graph, stream=stream)
|
|
|
|
def replay_graph(self, graph):
|
|
graph.replay()
|
|
return
|
|
|
|
# Tensor operations
|
|
@property
|
|
def BFloat16Tensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.bfloat16, device='hpu')
|
|
|
|
@property
|
|
def ByteTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.uint8, device='hpu')
|
|
|
|
@property
|
|
def DoubleTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.double, device='hpu')
|
|
|
|
@property
|
|
def FloatTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.float, device='hpu')
|
|
|
|
@property
|
|
def HalfTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.half, device='hpu')
|
|
|
|
@property
|
|
def IntTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.int, device='hpu')
|
|
|
|
@property
|
|
def LongTensor(self):
|
|
return functools.partial(torch.tensor, dtype=torch.long, device='hpu')
|
|
|
|
def pin_memory(self, tensor, align_bytes=1):
|
|
return tensor.pin_memory(self.device())
|
|
|
|
def is_pinned(self, tensor):
|
|
return tensor.is_pinned()
|
|
|
|
def on_accelerator(self, tensor):
|
|
device_str = str(tensor.device)
|
|
if device_str.startswith('hpu:'):
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def op_builder_dir(self):
|
|
try:
|
|
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
|
|
# if successful this also means we're doing a local install and not JIT compile path
|
|
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
|
|
return "op_builder.hpu"
|
|
except ImportError:
|
|
return "deepspeed.ops.op_builder.hpu"
|
|
|
|
# dict that holds class name <--> class type mapping i.e.
|
|
# 'AsyncIOBuilder': <class 'op_builder.async_io.AsyncIOBuilder'>
|
|
# this dict will be filled at init stage
|
|
class_dict = None
|
|
|
|
def _lazy_init_class_dict(self):
|
|
if self.class_dict is not None:
|
|
return
|
|
else:
|
|
self.class_dict = {}
|
|
# begin initialize for create_op_builder()
|
|
# put all valid class name <--> class type mapping into class_dict
|
|
op_builder_dir = self.op_builder_dir()
|
|
op_builder_module = importlib.import_module(op_builder_dir)
|
|
op_builder_absolute_path = os.path.dirname(op_builder_module.__file__)
|
|
for _, module_name, _ in pkgutil.iter_modules([op_builder_absolute_path]):
|
|
# avoid self references,
|
|
# skip sub_directories which contains ops for other backend(cpu, npu, etc.).
|
|
if module_name != 'all_ops' and module_name != 'builder' and not os.path.isdir(
|
|
os.path.join(op_builder_absolute_path, module_name)):
|
|
module = importlib.import_module("{}.{}".format(op_builder_dir, module_name))
|
|
for member_name in module.__dir__():
|
|
if member_name.endswith(
|
|
'Builder'
|
|
) and member_name != "OpBuilder" and member_name != "CPUOpBuilder" and member_name != "TorchCPUOpBuilder": # avoid abstract classes
|
|
if not member_name in self.class_dict:
|
|
self.class_dict[member_name] = getattr(module, member_name)
|
|
# end initialize for create_op_builder()
|
|
|
|
# create an instance of op builder and return, name specified by class_name
|
|
def create_op_builder(self, class_name):
|
|
self._lazy_init_class_dict()
|
|
if class_name in self.class_dict:
|
|
return self.class_dict[class_name]()
|
|
else:
|
|
return None
|
|
|
|
# return an op builder class, name specified by class_name
|
|
def get_op_builder(self, class_name):
|
|
self._lazy_init_class_dict()
|
|
if class_name in self.class_dict:
|
|
return self.class_dict[class_name]
|
|
else:
|
|
return self.class_dict['NotImplementedBuilder'] if 'NotImplementedBuilder' in self.class_dict else None
|
|
|
|
def build_extension(self):
|
|
from torch.utils.cpp_extension import BuildExtension
|
|
return BuildExtension
|
|
|
|
def export_envs(self):
|
|
return []
|
|
|
|
def visible_devices_envs(self):
|
|
# Current way deepspeed set this env var is not applicable with all HPU instances
|
|
# User has to follow instructions in:
|
|
# https://docs.habana.ai/en/latest/PyTorch/Reference/PT_Multiple_Tenants_on_HPU/Multiple_Workloads_Single_Docker.html
|
|
# keeping CUDA_VISIBLE_DEVICES
|
|
return ['CUDA_VISIBLE_DEVICES'] #['HABANA_VISIBLE_MODULES']
|
|
|
|
def set_visible_devices_envs(self, current_env, local_accelerator_ids):
|
|
for env in self.visible_devices_envs():
|
|
current_env[env] = ",".join(map(str, local_accelerator_ids))
|
|
|
|
def get_compile_backend(self):
|
|
return self._compile_backend
|
|
|
|
def set_compile_backend(self, backend):
|
|
supported_backends = torch._dynamo.list_backends(exclude_tags=())
|
|
if backend in supported_backends:
|
|
self._compile_backend = backend
|
|
else:
|
|
raise ValueError(
|
|
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends}")
|