Files
DeepSpeed/accelerator/hpu_accelerator.py
Max Kovalenko 450b965efb Revert "Add index to HPU devices (#7497)" (#7545)
This reverts commit 047a7599d24622dfb37fa5e5a32c671b1bb44233.

Unfortunately, the above required substantial redesign of existing HPU
stack, which is currently not feasible, so reverting.

Signed-off-by: Max Kovalenko <mkovalenko@habana.ai>
Co-authored-by: Olatunji Ruwase <tunji.ruwase@snowflake.com>
2025-09-08 18:07:55 -04:00

332 lines
11 KiB
Python

# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import functools
import os
import pkgutil
import importlib
import torch
from .abstract_accelerator import DeepSpeedAccelerator
class HPU_Accelerator(DeepSpeedAccelerator):
def __init__(self):
self._name = 'hpu'
self._communication_backend_name = 'hccl'
self._compile_backend = "hpu_backend"
self.apply_hpu_workarounds()
try:
import habana_frameworks.torch.hpu as hpu
self.hpu = hpu
torch.use_deterministic_algorithms(True)
# TODO: remove this WA when memory mapping break is resolved.
torch.utils.deterministic.fill_uninitialized_memory = False
except ImportError as e:
raise ValueError(
"HPU_Accelerator requires habana_frameworks.torch.hpu, which is not installed on this system.")
self.fp16_supported = None
def apply_hpu_workarounds(self):
def update_wa_env_var(key, value):
if key not in os.environ.keys():
os.environ[key] = value
update_wa_env_var("PT_HPU_LAZY_ACC_PAR_MODE", "0")
update_wa_env_var("PT_HPU_ENABLE_REFINE_DYNAMIC_SHAPES", "0")
# Device APIs
def is_synchronized_device(self):
return False
def use_host_timers(self):
return False
def resolves_data_dependency(self):
return True
def handles_memory_backpressure(self):
return True
def device_name(self, device_index=None):
# ignoring device_index.
return 'hpu'
def device(self, device_index=None):
return torch.device(self.device_name(device_index))
def set_device(self, device_index):
self.hpu.set_device(device_index)
def current_device(self):
return (self.hpu.current_device())
def current_device_name(self):
return 'hpu:{}'.format(self.current_device())
def device_count(self):
return self.hpu.device_count()
def synchronize(self, device_index=None):
return self.hpu.synchronize()
# RNG APIs
def random(self):
return torch.random
def set_rng_state(self, new_state, device_index=None):
self.hpu.random.set_rng_state(new_state)
def get_rng_state(self, device_index=None):
return self.hpu.random.get_rng_state()
def manual_seed(self, seed):
return self.hpu.random.manual_seed(seed)
def manual_seed_all(self, seed):
self.hpu.random.manual_seed_all(seed)
def initial_seed(self):
return self.hpu.random.initial_seed()
def default_generator(self, device_index):
return self.hpu.random.default_generators[device_index]
# Streams/Events
@property
def Stream(self):
return self.hpu.Stream
def stream(self, stream):
return self.hpu.stream(stream)
def current_stream(self, device_index=None):
return self.hpu.current_stream()
def default_stream(self, device_index=None):
return self.hpu.default_stream()
@property
def Event(self):
import habana_frameworks.torch.core as htcore
return htcore.hpu.Event
# Memory management
def empty_cache(self):
return
def memory_allocated(self, device_index=None):
return self.hpu.memory_allocated()
def max_memory_allocated(self, device_index=None):
return self.hpu.max_memory_allocated()
def reset_max_memory_allocated(self, device_index=None):
return self.hpu.reset_max_memory_allocated()
def memory_cached(self, device_index=None):
return self.hpu.memory_cached(device_index)
def max_memory_cached(self, device_index=None):
return self.hpu.max_memory_cached(device_index)
def reset_max_memory_cached(self, device_index=None):
return None
def memory_stats(self, device_index=None):
return self.hpu.memory_stats(device_index)
def reset_peak_memory_stats(self, device_index=None):
self.hpu.reset_peak_memory_stats(device_index)
def memory_reserved(self, device_index=None):
return self.hpu.memory_reserved(device_index)
def max_memory_reserved(self, device_index=None):
return self.hpu.max_memory_reserved(device_index)
def total_memory(self, device_index=None):
return self.memory_stats(device_index)['Limit']
def available_memory(self, device_index=None):
return self.total_memory(device_index) - self.memory_allocated(device_index)
# Data types
def is_bf16_supported(self):
return True
def is_fp16_supported(self):
if self.fp16_supported is None:
import habana_frameworks.torch.utils.experimental as htexp
self.fp16_supported = htexp._is_fp16_supported()
return self.fp16_supported
def supported_dtypes(self):
supported_dtypes = [torch.float, torch.bfloat16]
if self.is_fp16_supported():
supported_dtypes.append(torch.half)
return supported_dtypes
# Misc
def amp(self):
return None
def is_available(self):
return self.hpu.is_available()
def range_push(self, msg):
return
def range_pop(self):
return
def lazy_call(self, callback):
callback()
def communication_backend_name(self):
return self._communication_backend_name
def is_triton_supported(self):
return False
# Graph operations
def create_graph(self):
return self.hpu.HPUGraph()
def capture_to_graph(self, graph, pool=None, stream=None):
return self.hpu.graph(graph, stream=stream)
def replay_graph(self, graph):
graph.replay()
return
# Tensor operations
@property
def BFloat16Tensor(self):
return functools.partial(torch.tensor, dtype=torch.bfloat16, device='hpu')
@property
def ByteTensor(self):
return functools.partial(torch.tensor, dtype=torch.uint8, device='hpu')
@property
def DoubleTensor(self):
return functools.partial(torch.tensor, dtype=torch.double, device='hpu')
@property
def FloatTensor(self):
return functools.partial(torch.tensor, dtype=torch.float, device='hpu')
@property
def HalfTensor(self):
return functools.partial(torch.tensor, dtype=torch.half, device='hpu')
@property
def IntTensor(self):
return functools.partial(torch.tensor, dtype=torch.int, device='hpu')
@property
def LongTensor(self):
return functools.partial(torch.tensor, dtype=torch.long, device='hpu')
def pin_memory(self, tensor, align_bytes=1):
return tensor.pin_memory(self.device())
def is_pinned(self, tensor):
return tensor.is_pinned()
def on_accelerator(self, tensor):
device_str = str(tensor.device)
if device_str.startswith('hpu:'):
return True
else:
return False
def op_builder_dir(self):
try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
return "op_builder.hpu"
except ImportError:
return "deepspeed.ops.op_builder.hpu"
# dict that holds class name <--> class type mapping i.e.
# 'AsyncIOBuilder': <class 'op_builder.async_io.AsyncIOBuilder'>
# this dict will be filled at init stage
class_dict = None
def _lazy_init_class_dict(self):
if self.class_dict is not None:
return
else:
self.class_dict = {}
# begin initialize for create_op_builder()
# put all valid class name <--> class type mapping into class_dict
op_builder_dir = self.op_builder_dir()
op_builder_module = importlib.import_module(op_builder_dir)
op_builder_absolute_path = os.path.dirname(op_builder_module.__file__)
for _, module_name, _ in pkgutil.iter_modules([op_builder_absolute_path]):
# avoid self references,
# skip sub_directories which contains ops for other backend(cpu, npu, etc.).
if module_name != 'all_ops' and module_name != 'builder' and not os.path.isdir(
os.path.join(op_builder_absolute_path, module_name)):
module = importlib.import_module("{}.{}".format(op_builder_dir, module_name))
for member_name in module.__dir__():
if member_name.endswith(
'Builder'
) and member_name != "OpBuilder" and member_name != "CPUOpBuilder" and member_name != "TorchCPUOpBuilder": # avoid abstract classes
if not member_name in self.class_dict:
self.class_dict[member_name] = getattr(module, member_name)
# end initialize for create_op_builder()
# create an instance of op builder and return, name specified by class_name
def create_op_builder(self, class_name):
self._lazy_init_class_dict()
if class_name in self.class_dict:
return self.class_dict[class_name]()
else:
return None
# return an op builder class, name specified by class_name
def get_op_builder(self, class_name):
self._lazy_init_class_dict()
if class_name in self.class_dict:
return self.class_dict[class_name]
else:
return self.class_dict['NotImplementedBuilder'] if 'NotImplementedBuilder' in self.class_dict else None
def build_extension(self):
from torch.utils.cpp_extension import BuildExtension
return BuildExtension
def export_envs(self):
return []
def visible_devices_envs(self):
# Current way deepspeed set this env var is not applicable with all HPU instances
# User has to follow instructions in:
# https://docs.habana.ai/en/latest/PyTorch/Reference/PT_Multiple_Tenants_on_HPU/Multiple_Workloads_Single_Docker.html
# keeping CUDA_VISIBLE_DEVICES
return ['CUDA_VISIBLE_DEVICES'] #['HABANA_VISIBLE_MODULES']
def set_visible_devices_envs(self, current_env, local_accelerator_ids):
for env in self.visible_devices_envs():
current_env[env] = ",".join(map(str, local_accelerator_ids))
def get_compile_backend(self):
return self._compile_backend
def set_compile_backend(self, backend):
supported_backends = torch._dynamo.list_backends(exclude_tags=())
if backend in supported_backends:
self._compile_backend = backend
else:
raise ValueError(
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends}")