'''Copyright The Microsoft DeepSpeed Team''' from benchmarks.communication.utils import * from benchmarks.communication.constants import * from deepspeed.accelerator import get_accelerator import time def timed_all_reduce(input, args): if args.dist == 'torch': import torch.distributed as dist elif args.dist == 'deepspeed': import deepspeed.comm as dist sync_all() # Warmups, establish connections, etc. for i in range(args.warmups): dist.all_reduce(input, async_op=args.async_op) sync_all() # time the actual comm op trials times and average it pre = time.perf_counter() for i in range(args.trials): dist.all_reduce(input, async_op=args.async_op) sync_all() duration = time.perf_counter() - pre # maintain and clean performance data avg_duration = duration / args.trials size = input.element_size() * input.nelement() n = dist.get_world_size() tput, busbw = get_bw('all_reduce', size, avg_duration, args) tput_str, busbw_str, duration_str = get_metric_strings(args, tput, busbw, avg_duration) desc = f'{input.nelement()}x{input.element_size()}' if not args.raw: size = convert_size(size) print_rank_0(f"{size:<20} {desc:25s} {duration_str:20s} {tput_str:20s} {busbw_str:20s}") def run_all_reduce(local_rank, args): if args.dist == 'torch': import torch.distributed as dist elif args.dist == 'deepspeed': import deepspeed.comm as dist # Prepare benchmark header print_header(args, 'all_reduce') world_size = dist.get_world_size() global_rank = dist.get_rank() if args.scan: M_LIST = [] for x in (2**p for p in range(1, args.maxsize)): M_LIST.append(x) sync_all() # loop over various tensor sizes for M in M_LIST: global_rank = dist.get_rank() try: mat = torch.ones(world_size, M, dtype=getattr(torch, args.dtype)).to(get_accelerator().device_name(local_rank)) sync_all() input = ((mat.mul_(float(global_rank))).view(-1)) except RuntimeError as e: if 'out of memory' in str(e): if dist.get_rank() == 0: print('WARNING: Ran out of GPU memory. Exiting comm op.') sync_all() break sync_all() timed_all_reduce(input, args) else: # Send the biggest message size our GPUs can fit. If you're facing OOM errors, reduce the mem_factor # Don't need output tensor, so we double mem_factor elements_per_gpu = max_numel(comm_op='all_reduce', dtype=getattr(torch, args.dtype), mem_factor=args.mem_factor * 2, local_rank=local_rank, args=args) try: mat = torch.ones(elements_per_gpu, dtype=getattr(torch, args.dtype)).to(get_accelerator().device_name(local_rank)) input = ((mat.mul_(float(global_rank))).view(-1)) except RuntimeError as e: if 'out of memory' in str(e): if dist.get_rank() == 0: print('WARNING: Ran out of GPU memory. Try to reduce the --mem-factor argument!') sync_all() return sync_all() timed_all_reduce(input, args) if __name__ == "__main__": args = benchmark_parser().parse_args() rank = args.local_rank init_processes(local_rank=rank, args=args) run_all_reduce(local_rank=rank, args=args)